
September 2019

TESTING

Arquillian: Easy Jakarta EE Testing
How to use the Arquillian framework to test
Jakarta EE applications
by Josh Juneau

August 19, 2019

Testing web and enterprise applications can be much more tedious than
testing Java SE projects because there are many different types of files,
varying scopes and, in most cases, different phases to test. Over the
years, Arquillian has become a powerful, robust testing framework for
use with Java EE and Jakarta EE. It was developed by the JBoss project
(now part of Red Hat), and there are several add-on extensions that can
enhance the tests and their output.

The Arquillian framework is very powerful, and with that power there
comes a certain amount of complexity. Configuration of test classes can
be very easy or fairly complex depending upon the level of testing that
needs to be done.

In this article, I walk through configuration and testing with the Arquillian
framework. I cover the configuration and build of a basic Jakarta EE 8
application (on par with Java EE 8) along with some tests that use JUnit
4 and Arquillian. After I provide some basic examples, I examine a few of
the more important features and extensions that you can use to enhance
verification of your Java EE and Jakarta EE projects. To follow along, you
should be familiar with Java EE or Jakarta EE projects.

The example application is built using Maven, but any IDE that works
with Maven projects should work fine. However, my example uses
Apache NetBeans IDE. I recommended that you obtain from GitHub the
Maven web application project example entitled ArquillianExample.

Configuring the Environment

One of the most difficult areas of working with the Arquillian framework is
configuration. Only a few Maven dependencies are required for basic
testing, but you must use the correct versions of these dependencies or
you can run into incompatibilities that lead to errors. To begin from
scratch, create a Maven web application project, either using a Maven
archetype from the command line or an IDE such as Apache NetBeans. If
you are using Apache NetBeans, choose Java EE 8 as the platform.

Once you create the project, right-click the project and open the POM file.
Add the dependencies that are shown in Listing 1, which cover the
Arquillian requirements. (Note: If you use the example source code for
this article, there are additional dependencies that pertain to the Jakarta
EE platform and the Apache Derby database.)

Walking through the dependencies, the artifact is the
“bill of materials” for the Arquillian framework, and it is used for any
transitive dependencies. Next, in the standard section
of the POM file, the JUnit framework is added. In this case, JUnit 4 is
being used, because JUnit 5 was not yet supported at the time this article
was written. However, some work has been done for getting Arquillian to
work with JUnit 5. The Arquillian JUnit container is required for the API to

arquillian-bom

<dependencies>

Arquillian: Easy Jakarta EE Testing

Configuring the Environment

Writing a Small Application

Writing and Executing Basic CDI
Unit Tests

Configuring for JPA and GlassFish

Options for Test Execution

Testing with Multiple Containers

Going Further

Extensions

Conclusion

Also in This Issue

SubscribeTopics Issues Downloads

Search Java Magazine

Menu

https://blogs.oracle.com/javamagazine
https://blogs.oracle.com/javamagazine/september-2019
https://blogs.oracle.com/javamagazine/testing-3
http://arquillian.org/
https://github.com/juneau001/ArquillianExample
https://bitbucket.org/javamagazine/magdownloads/wiki/Arquillian%20-%20Listing%201
https://oracle.dragonforms.com/ORA6028_Jfnew&pk=JFCM19
https://www.oracle.com/

work with JUnit. There is also a container available for use with TestNG if
that is your preferred testing framework. The JBoss ShrinkWrap Resolver
is used to provide support for ShrinkWrap, which enables you to
declaratively create a deployment archive via code. The remaining
dependencies are required for deploying the test archive to an embedded
CDI container named . There are
several deployment options, depending upon the level of testing you are
trying to achieve. The Weld embedded container is useful for testing CDI
without the need for making database connections or other features that
are part of an application server container. Utilization of the embedded
container makes startup time and testing a breeze. If you need to perform
database connection testing or require the use of other application server
features, deployment to a remote container is possible. Later in the
article, I’ll cover connecting to a GlassFish server.

Writing a Small Application

The application used in this example interacts with a small set of
database tables, allowing you to Create, Read, Update, and Delete
(CRUD) records pertaining to a swimming pool company and its
customers. Apache NetBeans and most other IDEs can be used to
generate the application in a very quick manner using wizards. So, I will
skip over the initial generation of the application and focus on testing the
application logic.

A can be entered into the database and associated with a
 object. In this article, I create unit tests of the database

operations using the Java Persistence API (JPA) and an EJB bean. The
article also covers the testing of a CDI bean. This bean performs the
business logic that binds the front end to the EJB bean that interacts with
the database. Note that the EJB bean could be replaced with RESTful
service calls, and testing would occur in a similar manner.

Writing and Executing Basic CDI Unit Tests

Let’s begin with a very simple CDI test. The CDI bean for this basic test
simply uses CDI injection and tests to ensure that objects are being
created properly. Before you can write a test, you must set up the testing
class properly.

Typically, each class that contains business logic for an application
should have a corresponding test class, and in this case, the test class is
named . For the test class to harness Arquillian,
you must place the annotation before
the class declaration. This annotation tells the testing framework to run
the tests using the Arquillian engine.

Each class must also have a deployment method, which packages all of
the specified classes, libraries, and configuration files into a testing
package (WAR, EAR, or JAR). The testing package is then automatically
deployed to the selected test container and executed by the Arquillian
engine after it is built, and the resulting output is displayed to the
command line or in the IDE.

To create the deployment package, annotate a public static method with
, and return a archive. (Listing 2 illustrates

this.) Inside the deployment method, use the builder pattern to construct
the deployable archive with . Call the method
and pass the type of archive that is desired, which in this case is

. Other types of archives include to
create a standard JAR and to create an EAR file.
You must add to the each class that will be used by the test,
and this is achieved by calling the , ,

, or method accordingly. Note that the
 method is also called, adding a file to

invoke CDI. Refer to the ShrinkWrap tutorial for more details regarding
the various methods that are part of the builder for the
deployment.

arquillian-weld-ee-embedded

PoolPool

CustomerCustomer PoolPool

PoolPool

PoolControllerTestPoolControllerTest

@RunWith(Arquillian.class)@RunWith(Arquillian.class)

@Deployment@Deployment ShrinkWrapShrinkWrap

ShrinkWrapShrinkWrap create()create()

WebArchive.classWebArchive.class JavaArchiveJavaArchive

EnterpriseArchiveEnterpriseArchive

CLASSPATH

addClass()addClass() addClasses()addClasses()

addPackage()addPackage() addPackages()addPackages()

addAsManifest()addAsManifest() beans.xml

create()create()

https://developer.jboss.org/wiki/ShrinkWrap
https://bitbucket.org/javamagazine/magdownloads/wiki/Arquillian%20-%20Listing%202

Listing 3 contains the source code of the . In the
constructor, two objects are constructed and added to an

. The is tested to ensure that it is not empty. The
CDI controller can be injected into the test class by using the standard

 annotation. The injection should occur just prior to the test
method. Because this test uses JUnit, annotate the test method with

, and within the test method, call one of the
assertion methods to indicate whether the test was successful. See
Listing 4 for the complete source code of the test class. As with any
other JUnit test, there are several methods that can be used
to test an expression, returning a boolean value. See the JUnit
documentation for a list of the method options.

To execute the test, simply run the Maven build from within an IDE or
from the command line; the tests will be run each time the project is built.
To perform the tests only, use the command from the
command line. When the project is built using Maven or the tests are
executed from the command line, the embedded Weld container (which
is the selected deployment container for this project) executes the tests.
After executing the tests, the output should look as follows:

Configuring for JPA and GlassFish

To perform testing against an actual database, you need to make a few
decisions. It is possible to inject a directly into a
test class, and in such cases, a should also be
injected to manage the transactions. In such cases, the test class itself is
being treated as a CDI controller. Such a test might look similar to the
following:

In this article, instead of using a , I use a remote
GlassFish server for deployment and testing. It is also possible to use
Payara as an alternative to GlassFish, because it will work with the same
dependencies. There are several other servers you can choose as well.
Testing against a remote server has a number of benefits, including the
ability to test in a real environment as opposed to a test environment, not
to mention the ability to configure database connection pools and server
environmental settings to match production use cases.

To test against a remote server, the server must be up and running
before you attempt to execute the tests or they will fail. The server is
outside the Arquillian engine, so it must be configured as a “remote”
server even though it might be installed on the same machine that is
running the tests. As an alternative, you can configure a truly remote
server to run the tests.

Additional configuration is required within the
 area for setting up the remote server

environment and the additional dependency for
 in the POM file, as shown in

PoolControllerPoolController

PoolPool

ArrayListArrayList ArrayListArrayList

@Inject@Inject

@Test@Test org.junit.Assertorg.junit.Assert

AssertionAssertion

AssertionAssertion

mvn test

Tests run: 1, Failures: 0,
 Errors: 0, Skipped: 0
 org.javamagazine.arquillianexample.cdi.PoolControll
Results :
Tests run: 1, Failures: 0, Errors: 0, Skipped: 0

PersistenceContextPersistenceContext

UserTransactionUserTransaction

@Test@Test
public void insertData(){public void insertData(){
 utx.begin(); utx.begin();
 em.joinTransaction(); em.joinTransaction();
 Pool pool = new Pool(); Pool pool = new Pool();
 // set values // set values
 em.persist(pool); em.persist(pool);
 utx.commit(); utx.commit();
 em.clear(); em.clear();
}}

PersistenceContextPersistenceContext

src/test/java/resources

arquillian-glassfish-remote-3.1

https://bitbucket.org/javamagazine/magdownloads/wiki/Arquillian%20-%20Listing%203
https://bitbucket.org/javamagazine/magdownloads/wiki/Arquillian%20-%20Listing%204

Listing 5. The credentials for logging in to the GlassFish server must be
placed into an file, as shown in Listing 6.

Note that one of the attributes for configuring the container is
, which can point to a truly remote server, if desired. It is a good idea to
set up a file in this resources area, so testing
can occur using a test database. Create a persistence context named

, and place it in the project’s
 folder. The file should contain a Java

Transaction API (JTA) connection configuration for a data source that is
configured within the remote application server container.

Now that the configuration for a remote GlassFish server is in place, it is
time to construct tests for the EJB bean . The EJB
tests should be placed inside the folder and named

. The source code for is shown in Listing 7. The
test class should include the standard

 annotation before the declaration,
and it should contain a static method annotated with for
returning a ShrinkWrap archive.

Here, the deployment method is named and
contains references to each of the classes that must be in the

 for running the EJB test. The deployment uses the builder
pattern to call

for configuring CDI within the test deployment artifact. It also contains a
call to

for configuring the persistence context.

In this case, the file is loaded as a standard
 file for the test deployment. The test method within

 is very simple, because it calls
 to determine whether the entity is

queried and it returns results from using the
method.

In the actual application, the EJB bean is not called directly, but rather the
CDI controller is invoked from the front end.
Therefore, the CDI bean should be tested to
ensure that it is invoking the application logic properly to return the
results to the screen. The

is used to perform testing against the CDI controller, as shown in Listing
8. Very similar to the EJB test, this test calls the

 method to ensure it is
populated. The class populates the

 upon instantiation, so the test should return a
result.

Options for Test Execution

The tests can be executed from the command line or within an IDE. Tests
can be run separately for each file to be tested, or all tests for a project
can be harnessed into the build process. To execute a single file test from
the command line, open a command line and navigate to the project
directory; then issue the following command:

arquillian.xml

adminHost

test-persistence.xml

test-persistence.xml

src/test/java/resources

CustomerFacadeCustomerFacade

src/test/java

org.javamagazine.arquillianexample.session.CustomerFacadeTest

CustomerFacadeTestCustomerFacadeTest

@RunWith(Arquillian.class)@RunWith(Arquillian.class)

@Deployment@Deployment

createDeployment()createDeployment()

CLASSPATH

addAsManifestResource(EmptyAsset.INSTANCE,"beans.xmladdAsManifestResource(EmptyAsset.INSTANCE,"beans.xml

addAsResource("test-persistence.xml", "META-INF/persaddAsResource("test-persistence.xml", "META-INF/pers

test-persistence.xml

persistence.xml

CustomerFacadeTestCustomerFacadeTest

Assert.assertTrueAssert.assertTrue CustomersCustomers

findAllCustomers()findAllCustomers()

CustomerControllerCustomerController

CustomerControllerCustomerController

org.javamagazine.arquillianexample.cdi.CustomerControllerTestorg.javamagazine.arquillianexample.cdi.CustomerControllerTest

CustomerController getCustomerList()CustomerController getCustomerList()

CustomerControllerCustomerController

customerListcustomerList truetrue

mvn test

https://bitbucket.org/javamagazine/magdownloads/wiki/Arquillian%20-%20Listing%205
https://bitbucket.org/javamagazine/magdownloads/wiki/Arquillian%20-%20Listing%206
https://bitbucket.org/javamagazine/magdownloads/wiki/Arquillian%20-%20Listing%207
https://bitbucket.org/javamagazine/magdownloads/wiki/Arquillian%20-%20Listing%208

The results of the test will be displayed immediately. In the case where X
number of tests are configured, there should be X number of successes.
If you are running the tests as part of the Maven build, the build will fail if
any of the tests fail. This prevents the packaging of an application when
failing tests are encountered.

Testing within an IDE can be beneficial for receiving visual feedback. The
NetBeans IDE allows a test to be executed by right-clicking the test file or
the project itself and choosing Test File, as shown in Figure 1.

Figure 1. Running a single test within the NetBeans IDE

When you execute a test within NetBeans, a Test Results panel will be
displayed to show the outcome of the tests. If there are several tests,
each of the failed tests is listed within the panel so the results can be
parsed and corrections can be made, as shown in Figure 2. The panel
also contains buttons on the left for easily navigating the test results or
re-executing the tests.

Figure 2. Apache NetBeans Test Results panel

Testing with Multiple Containers

To configure a project with the ability to run tests in different containers,
consider declaring Maven profiles within the POM file. Maven profiles
enable dependencies to be separated from each other for each
container; and when the project is built, the desired profile can be
selected. It is also possible to designate a default profile in the POM file
by setting the element equal to as shown in
Listing 9.

Each profile contains the dependencies for the container, and the active
container can be switched by changing the element.
Note that some IDEs also have the option to allow different Maven
profiles to be chosen from a user interface.

Going Further

activeByDefault true

activeByDefault

https://bitbucket.org/javamagazine/magdownloads/wiki/Arquillian%20-%20Listing%209

The Arquillian framework includes a number of test enrichers that can be
used within test classes to further coordinate the tests and control
execution. For instance, as demonstrated in previous examples, injection
points can be made in fields by using the annotation, or they
can be made directly in a test method by declaring them as arguments.

Also shown in the examples, the enricher is used to inject session
beans into a test class. Other enrichers include
, , and . The first two are self-
explanatory; the annotation is used to inject any object that
is available to the Java Naming and Directory Interface (JNDI). This
option is very useful for performing remote container tests against other
available JNDI resources.

Tests can be run in two modes: container mode and client mode.
Container mode is the default, and it provides the ability to repackage the

 by adding Arquillian support classes, so it can be tested
remotely in a container. The client mode option does not repackage the

 or deploy to a remote server. Rather, the test cases run in
the JVM so clients can test the container from outside. To run in client
mode, annotate the static deployment method as follows:

To run both container and client tests, declare the deployment with
, and annotate any test methods to be run in client

mode with . One reason to run as a client would be so
the front end can be tested with the help of the Warp extension. The
Warp extension enables you to write client-side tests and assert server-
side logic, allowing you to cover integration tests across both the client
and server.

Extensions

Several extensions can be paired with Arquillian to perform different
types of testing. As mentioned earlier, the Warp extension can be used to
write client-side tests asserting server-side logic. Another popular
extension is Graphene, which can be especially useful for testing front
ends built with JavaServer Faces (JSF) or Spring MVC. It uses Selenium
WebDriver to provide a programmatic way to communicate with the
browser, so you can use Java code to fill in forms or navigate web pages
through business logic and testing behavior via assertions. Along the
way, content can be validated so tests can ensure the proper functionality
is being achieved within the UI. Drone is yet another extension that works
with Selenium WebDriver to help manage the life cycle of the browser
and inject the browser into the testing class. The Graphene extension
depends upon Drone and Selenium, so you’ll need to add some
dependencies to the project in order to utilize these extensions. The

 for a Graphene test should be executed in “client” mode,
so it should contain the attribute. The deployment
package for testing a user interface must contain each of the views that
will be tested. Therefore, if the application contains a view named

, then the method should add this
resource, as follows:

Graphene enables you to develop “page objects” and “page fragments,”
which makes possible the testing of separate pages and functionality
contained within those pages by using Java, rather than markup. I won’t
dive into detail on these concepts in this article, but I strongly recommend
looking at these features for your testing needs.

Conclusion

@Inject@Inject

@EJB@EJB

@PersistenceContext@PersistenceContext

@PersistenceUnit@PersistenceUnit @Resource@Resource

@Resource@Resource

@Deployment@Deployment

@Deployment@Deployment

@Deployment(testable=false)@Deployment(testable=false)

testable=truetestable=true

@RunAsClient@RunAsClient

@Deployment@Deployment

testable=falsetestable=false

customer.xhtml @Deployment@Deployment

.addAsWebResource("/customer.xhtml");.addAsWebResource("/customer.xhtml");

Josh Juneau
Josh Juneau (@javajuneau) works as an application
developer, system analyst, and database
administrator. He primarily develops using Java and
other JVM languages. He is a frequent contributor to
Oracle Technology Network and Java Magazine and
has written several books for Apress about Java
and Java EE. Juneau was a JCP Expert Group
member for JSR 372 and JSR 378. He is a member
of the NetBeans Dream Team, a Java Champion,
leader for the CJUG OSS Initiative, and a regular
voice on the JavaPubHouse Off Heap podcast.

Share this Page

The Arquillian framework is an essential tool for any Java EE/Jakarta EE
developer, because it enables the testing of components that are
primarily utilized by enterprise applications. The framework supports fine-
tuned and focused testing, allowing you to include only selected classes
and features in test deployments. It is also a mature testing framework for
which many extensions have been created, which enable testing of
technologies used in enterprise development, such as JSF, REST,
Servlet, and Spring MVC.

Also in This Issue

Know for Sure with Property-Based Testing
Unit Test Your Architecture with ArchUnit
The New Java Magazine
For the Fun of It: Writing Your Own Text Editor, Part 1
Quiz Yourself: Using Collectors (Advanced)
Quiz Yourself: Comparing Loop Constructs (Intermediate)
Quiz Yourself: Threads and Executors (Advanced)
Quiz Yourself: Wrapper Classes (Intermediate)
Book Review: Core Java, 11th Ed. Volumes 1 and 2

Contact
US Sales: +1.800.633.0738
Global Contacts
Support Directory
Subscribe to Emails

About Us
Careers
Communities
Company Information
Social Responsibility Emails

Downloads and Trials
Java for Developers
Java Runtime Download
Software Downloads
Try Oracle Cloud

News and Events
Acquisitions
Blogs
Events
Newsroom

© Oracle Site Map Terms of Use & Privacy Cookie Preferences Ad Choices

https://blogs.oracle.com/javamagazine/josh-juneau
https://blogs.oracle.com/javamagazine/josh-juneau
https://blogs.oracle.com/javamagazine/know-for-sure-with-property-based-testing
https://blogs.oracle.com/javamagazine/unit-test-your-architecture-with-archunit
https://blogs.oracle.com/javamagazine/the-new-java-magazine
https://blogs.oracle.com/javamagazine/for-the-fun-of-it-writing-your-own-text-editor-part-1
https://blogs.oracle.com/javamagazine/quiz-advanced-collectors
https://blogs.oracle.com/javamagazine/quiz-intermediate-loop-constructs
https://blogs.oracle.com/javamagazine/quiz-advanced-executor-service
https://blogs.oracle.com/javamagazine/quiz-intermediate-wrapper-classes
https://blogs.oracle.com/javamagazine/core-java-11th-ed-volumes-1-and-2
https://www.oracle.com/corporate/contact/global.html
https://www.oracle.com/support/contact.html
https://go.oracle.com/subscriptions?l_code=en-us&src1=OW:O:FO
https://www.oracle.com/corporate/careers/
https://community.oracle.com/welcome
https://www.oracle.com/corporate/
https://www.oracle.com/corporate/citizenship/
http://www.oracle.com/technetwork/java/javase/downloads/
https://www.java.com/en/download/
https://www.oracle.com/downloads/
https://www.oracle.com/try-it.html?source=:ow:o:h:sb:&intcmp=:ow:o:h:sb:
https://www.oracle.com/corporate/acquisitions/
https://blogs.oracle.com/
https://www.oracle.com/search/events
https://www.oracle.com/corporate/press/
https://www.facebook.com/Oracle/
https://twitter.com/oracle
https://www.linkedin.com/company/oracle/
http://www.youtube.com/oracle/
https://www.oracle.com/legal/copyright.html
https://www.oracle.com/sitemap.html
https://www.oracle.com/legal/privacy/
http://oracle.com/legal/privacy/privacy-policy.html#advertising
https://www.oracle.com/

