
1

<Insert Picture Here>

NUMA-aware Exchanger
Dave Dice
» Oracle Labs - Scalable Synchronization Research Group
» http://blogs.oracle.com/dave

http://blogs.sun.com/dave
http://blogs.sun.com/dave

Copyright © 2011 Oracle and/or its affiliates. All rights reserved. 2011-8-11

-

3

Exchanger - Interface
• java.util.concurrent.Exchanger
• message = ex.exchange(message)
• fully synchronous rendezvous
• symmetric : exchange instead of put/take
• useful for buffer exchange and to avoid

memory bloat issues associated with in-flight
data in queues

Copyright © 2011 Oracle and/or its affiliates. All rights reserved. 2011-8-11

-

4

Existing Implementation
• Array of slots

– resize automatically : 1 to 32
• hashIndex() helper function

– identifies preferred slot for thread T
– based on stable hash of Thread.getId()

Copyright © 2011 Oracle and/or its affiliates. All rights reserved. 2011-8-11

-

5

Existing Implementation
• exchange()

– start at caller’s preferred slot
– if pending offer in that slot then remove

and complete rendezvous
– install offer into array
– linger for a short time at that index
– if no rendezvous, rescind offer
– move to lower index, retry - scan
– spin-then-park at slot [0]
– converge toward 0 for progress

Copyright © 2011 Oracle and/or its affiliates. All rights reserved. 2011-8-11

-

6

Index collisions
• Too few : increased scanning
• Too many : impede progress - chokepoint
• Ideally want just the right level of collisions

to accomplish rendezvous
• Prefer uniform arrival rate over all indices

Copyright © 2011 Oracle and/or its affiliates. All rights reserved. 2011-8-11

-

7

NUMA awareness
• Exchanger is NUMA/NUCA-oblivious
• Ideally

– prefer intra-node exchange : endogamous
– scanning should minimize nodes visited

• Reduce coherence traffic
– Write sharing & invalidation
– Interconnect traffic is limiting factor for

large NUMA systems
– Interconnect capacity not increasing at

same rate as cores
– Bandwidth and latency concerns

Copyright © 2011 Oracle and/or its affiliates. All rights reserved. 2011-8-11

-

8

T5440
• 4-socket Niagara T2+ : 256x
• Each socket is a NUMA node
• Zambezi coherence hub
• 4 independent coherence planes
• Unloaded round-trip memory communication

times :
– same core : 130ns
– same socket : 165ns
– inter-socket : 650ns - NUCA

Copyright © 2011 Oracle and/or its affiliates. All rights reserved. 2011-8-11

-

9

CPUIDs
• Geographic CPUID layout on T5440

– [0,256)
– Node:2 | Core:3 | Pipeline:1 | Strand:2

• Solaris scheduler disperses threads over
CPUs to maximize “distance”
– distal placement

• Access CPUID in user-land via per-thread
schedctl structures

• JNI DirectBuffer access to schedctl
– JIT : 2 LDs to query CPUID
– efficient cpuid() primitive
– never leave managed code

Copyright © 2011 Oracle and/or its affiliates. All rights reserved. 2011-8-11

-

10

NUMA friendly Exchanger

• Partition array into bands - stripes
Geographically partitioned array

• Form communication cliques
• Simple linear mapping from cpuid() to index
• Index := (cpuid() * ArraySize)/maxcpuid

Scale CPUID into array index
• Trivial modification : 6 lines - hashIndex()

Node-0Node-0Node-0Node-0 Node-1Node-1Node-1Node-1 Node-2Node-2Node-2Node-2 Node-3Node-3Node-3Node-3

Copyright © 2011 Oracle and/or its affiliates. All rights reserved. 2011-8-11

-

11

Outcome

• A given array index is mapped to by threads
that reside on the same node : encourages
local exchange

• Adjacent indices are more likely associated
with the same node : scanning more efficient -
tend to touch local indices 1st

Copyright © 2011 Oracle and/or its affiliates. All rights reserved. 2011-8-11

-

12

Benchmark

• Spawn T concurrent threads
• All loop calling exchange() on single global

exchanger instance
• 10 second measurement intervals
• report aggregate throughput in messages

exchanged per msec
• 10 sub-trials for warm-up
• report median of last 3
• Threads on X-axis, throughput on Y
• +UseCondCardMark

Copyright © 2011 Oracle and/or its affiliates. All rights reserved. 2011-8-11

-

13

0

15000

30000

45000

60000

T2 T4 T10 T20 T40 T60 T80 T120 T150

tp
ut

Threads

Exchanger NUMA-friendly

Copyright © 2011 Oracle and/or its affiliates. All rights reserved. 2011-8-11

-

14

What’s next

• Fork-join : encourage node-local stealing
• CPU-specific caches or counters

– Often better than thread-specific
• Concurrent data structures striped by CPUID

Copyright © 2011 Oracle and/or its affiliates. All rights reserved. 2011-8-11

-

15

Low-level Interface

• intrisified Unsafe.getCpuId()
– schedctl on Solaris
– RDTSCP on other x86

• Topology discovery
– CpuIdToNodeId(cpuid)
– AvailableNodes()

• Distance metric : distanceTo(A,B)

Copyright © 2011 Oracle and/or its affiliates. All rights reserved. 2011-8-11

-

16

Alternative to distanceTo()
• Proximity map : Map[cpuid]
• constructed by JVM
• Converts actual cpuid into abstract cpuid
• Numerically close abstract values tend to be

nearby in system topology
• Usually but not always : #63, #64
• Identity map for Solaris/SPARC
• Potentially easier to use than distanceTo()
• Abstract ID space is a continuum
• Easy to map abstract IDs onto concurrent

data structure to provide coarse striping

Copyright © 2011 Oracle and/or its affiliates. All rights reserved. 2011-8-11

-

17

-XX:+UseCondCardMark

• Reduces false sharing in GC card table
• Most card table stores are redundant
• Don’t store if already marked dirty
• 32KB “card page”

Copyright © 2011 Oracle and/or its affiliates. All rights reserved. 2011-8-11

-

18

What about binding?

• Actively control thread placement
• Affinity APIs vary by platform

– advisory vs mandatory
• Need to understand CPUID mappings and

platform topology
• Inimical to dynamic reconfiguration and

virtualization
• Tension : virtualization introduces new layer

while, for performance, we’d like JVM to be
even more intimate with system

Copyright © 2011 Oracle and/or its affiliates. All rights reserved. 2011-8-11

-

19

What about binding?

• OS scheduler or hypervisor has a better view
of system than does a process locally
– better able to manage thread placement

• In practice multiple mutually unaware JVM
processes that use binding will cause a mess.
– some CPUs over-saturated
– others under-utilized
– begs for global resource coordination
– don’t try to make global resource decisions

with local information

Copyright © 2011 Oracle and/or its affiliates. All rights reserved. 2011-8-11

-

20

Thank you
• http://blogs.oracle.com/dave
• http://blogs.oracle.com/dave/entry/

solaris_scheduling_and_cpuids
• http://blogs.oracle.com/dave/entry/

false_sharing_induced_by_card

http://blogs.sun.com/dave
http://blogs.sun.com/dave
http://blogs.oracle.com/dave/entry/solaris_scheduling_and_cpuids
http://blogs.oracle.com/dave/entry/solaris_scheduling_and_cpuids
http://blogs.oracle.com/dave/entry/solaris_scheduling_and_cpuids
http://blogs.oracle.com/dave/entry/solaris_scheduling_and_cpuids
http://blogs.oracle.com/dave/entry/false_sharing_induced_by_card
http://blogs.oracle.com/dave/entry/false_sharing_induced_by_card
http://blogs.oracle.com/dave/entry/false_sharing_induced_by_card
http://blogs.oracle.com/dave/entry/false_sharing_induced_by_card

Copyright © 2011 Oracle and/or its affiliates. All rights reserved. 2011-8-11

-

21

Backup
• balls-and-bins probabilistic model
• busstat and cpustat confirm reduction in

coherence traffic
• NUCA instead of NUMA

– Our technique leverages ambient memory
placement : passive

– Agnostic regarding home nodes
– concerned with communications costs :

coherence misses

Copyright © 2011 Oracle and/or its affiliates. All rights reserved. 2011-8-11

-

22

Aside
• Interesting JUC exchanger hashIndex() issue
• Thread creation order correlated with getId

values and thus hashIndex(getId) value
• Thread creation order also correlated with

relative NUMA placement on large systems
like 256x T5440

• hashIndex(): input values that are multiples
of 32 tend to map to same index when “max”
is set to 31

• hashIndex(): input values that are multiples to
4 tend to map to same quadrant in slot array

Copyright © 2011 Oracle and/or its affiliates. All rights reserved. 2011-8-11

-

23

Aside
• Inadvertent correlation

– Thread launch order
– Thread getID value
– hashIndex(getId)
– NUMA placement of thread
– index into JUC exchanger slot array

• Results in unexpected partitioning of slot
indices - unexpected geographic relationship

